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ABSTRAK 

Kanser hati primer, karsinoma hepatoselular (HCC) merupakan kanser keenam 

penghidap tertinggi di dunia, dan ketiga tertinggi dalam kematian akibat kanser. 

Walaupun teknologi rawatan semakin maju, kesan HCC masih kekal ketara. 

Kebanyakan pesakit lewat di diagnos disebabkan tiada gejala yang ditunjukkan pada 

peringkat awal. Untuk menangani situasi ini, rutin ujian saringan fungsi hati diperlukan 

untuk pengesanan awal HCC dan dengan itu mengurangkan beban HCC dalam 

perkidmatan kesihatan. Teknologi kecerdasan buatan telah digunakan secara meluas 

dalam perkhidmatan kesihatan untuk diagnos dan ramalan penyakit. Walaupun 

sesetengah penyelidikan telah menggunakan pembelajaran mesin bagi membangunkan 

klasifikasi model klasifikasi HCC, kebolehtafsirannya adalah terhad. Oleh yang 

demikian, kajian ini bertujuan untuk (1) mencadangkan model yang terbaik untuk 

klasifikasi risiko HCC, (2) mengoptimumkan model klasifikasi risiko HCC, dan (3) 

mempertingkatkan komponen penjelasan dalam model klasifikasi risiko HCC 

menggunakan fuzzy logik (FL). Data-data ujian fungsi hati ini diambil dari data 

penanda aras pada pangkalan Kaggle. Analisis, prapemprosesan data dan kejuruteraan 

fitur telah dijalankan bagi memastikan data yang berkualiti tinggi untuk prestasi model 

yang lebih baik. Model-model pengelasan seperti pepohon keputusan (DT), hutan 

rawak (RF), mesin vektor sokongan (SVM), peningkatan kecerunan (GB), regresi 

logistic (LR), teluk naif gaussian (GNB), k-jiran terdekat (KNN) dan rangkaian saraf 

(NN) dilatih dengan data-data ini. Keputusan ujian menunjukkan bahawa RF 

mempunyai prestasi yang terbaik setelah pengoptimuman dengan penalaan 

hiperparameter. RF mencapai ketepatan 99% dan AUROC 0.9996 Kemudian, FL telah 

digunakan untuk mentafsir taakulan diagnosis RF tersebut. Hasilnya, terdapat 5 fuzzy 

rules yang boleh digunakan seperti (1) JIKA Albumin RENDAH TETAPI 

KEROSAKAN HATI TINGGI (SIROSIS) (0.70) DAN SGPT NORMAL (1.00) DAN 

Nisbah A/G RENDAH (0.60) DAN Nisbah SGOT/SGPT ADALAH SIROSIS 

(SGOT/SGPT > 1) (1.00) DAN Jumlah Bilirubin  RENDAH (1.00) MAKA kelas 1: 

HCC, (2) JIKA ALP TINGGI (1.00) DAN Nisbah A/G RENDAH (0.88) DAN SGPT 

NORMAL (1.00) MAKA kelas 0: non-HCC, (3) JIKA SGPT NORMAL (1.00) DAN 

Albumin RENDAH TETAPI KEROSAKAN HATI TINGGI (SIROSIS) (0.91) DAN 

Nisbah A/G RENDAH (0.70) DAN Jumlah Bilirubin RENDAH (0.93) DAN Jumlah 

Proteins RENDAH (0.36) DAN Nisbah SGOT/SGPT ADALAH HEPATITIS VIRUS 

(SGOT/SGPT = 1) (0.13), SIROSIS (SGOT/SGPT > 1) (1.00), PENYAKIT HATI 

ALKOHOLIK (SGOT/SGPT = 2) (0.87) MAKA kelas 1: HCC, (4) JIKA ALP TINGGI 

(0.50) DAN Jumlah Proteins NORMAL (1.00) DAN Albumin RENDAH TETAPI 

KEROSAKAN HATI TINGGI (SIROSIS) (0.24), NORMAL (0.52) DAN Nisbah 

SGOT/SGPT ADALAH SIROSIS (SGOT/SGPT > 1) (0.74) MAKA kelas 1: HCC, dan 

(5) JIKA ALP TINGGI (0.61) DAN SGPT NORMAL (1.00) Albumin RENDAH 

TETAPI KEROSAKAN HATI TINGGI (SIROSIS) (0.90) DAN Jumlah Bilirubin 

RENDAH (1.00) DAN Nisbah A/G RENDAH (0.56) DAN Nisbah SGOT/SGPT 

ADALAH NAFLD (SGOT/SGPT < 1) (0.43), HEPATITIS VIRUS (SGOT/SGPT = 1) 

(1.00) MAKA kelas 1: HCC. FL digunakan kerana ia dapat menguruskan 

ketidakpastian dan ketepatan dalam data. Ini amatlah berguna untuk membantu doktor 

membuat keputusan dalam diagnostik perubatan. Kesimpulannya, penyelidikan ini 

mempersembahkan pendekatan baru bagi membangunkan model pengelasan risiko 
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HCC yang mempunyai kemantapan dan ketepatan yang lebih tinggi serta hasil tafsiran 

yang lebih mudah difahami.  

Pus
at 

Sum
be

r 

FTSM



vii 

 

ABSTRACT 

The primary liver cancer, hepatocellular carcinoma (HCC) ranks sixth in cancer 

incidence and third in cancer-related deaths globally. Despite advancements in 

treatment, the impact of HCC remains significant. Most patients experienced a delayed 

diagnosis due to no symptoms in the early stages. In order to tackle this scenario, regular 

screening of liver function tests is required for early detection and thereby reduce the 

burden of HCC. Recently, artificial intelligence has been widely applied in healthcare 

for disease diagnosis and prediction. Some research has used machine learning to 

develop an HCC classification model, but its interpretability is limited. Hence, this 

study aims to (1) suggest the optimal model for HCC risk classification, (2) optimize 

the HCC risk classification model, and (3) improve the explainable component of HCC 

risk classification model with fuzzy logic (FL). Liver function test data were collected 

from Kaggle. Data analysis, data preprocessing, and feature engineering have been done 

to ensure high-quality data for better model performance. The models were trained 

among different supervised machine learning classifiers such as decision tree, random 

forest, support vector machine, gradient boosting, logistic regression, gaussian naïve 

bayes, k-nearest neighbour, and neural network. The testing result showed that the 

random forest has the best performance after optimization with hyperparameters tuning. 

Random forest achieved an accuracy of 99% and AUROC of 0.9996. Furthermore, FL 

has been applied for the interpretation of the 5 extracted rules in random forest such as 

(1) IF Albumin IS LOW BUT HIGH LIVER DAMAGE (CIRRHOSIS) (0.70) AND 

SGPT IS NORMAL (1.00) AND A/G Ratio IS LOW (0.60) AND SGOT/SGPT ratio 

IS CIRRHOSIS (SGOT/SGPT > 1) (1.00) AND Total Bilirubin IS LOW (1.00) THEN 

class 1: HCC, (2) IF ALP IS HIGH (1.00) AND A/G Ratio IS LOW (0.88) AND SGPT 

IS NORMAL (1.00) THEN class 0: non-HCC, (3) IF SGPT IS NORMAL (1.00) AND 

Albumin IS LOW BUT HIGH LIVER DAMAGE (CIRRHOSIS) (0.91) AND A/G 

Ratio IS LOW (0.70) AND Total Bilirubin IS LOW (0.93) AND Total Proteins IS LOW 

(0.36) AND SGOT/SGPT Ratio IS VIRAL HEPATITIS (SGOT/SGPT = 1) (0.13), 

CIRRHOSIS (SGOT/SGPT > 1) (1.00), ALCOHOLIC LIVER DISEASE 

(SGOT/SGPT = 2) (0.87) THEN class 1: HCC, (4) IF ALP IS HIGH (0.50) AND Total 

Proteins IS NORMAL (1.00) AND Albumin IS LOW BUT HIGH LIVER DAMAGE 

(CIRRHOSIS) (0.24), NORMAL (0.52) AND SGOT/SGPT ratio IS CIRRHOSIS 

(SGOT/SGPT > 1) (0.74) THEN class 1: HCC, and (5) IF ALP IS HIGH (0.61) AND 

SGPT IS NORMAL (1.00) Albumin IS LOW BUT HIGH LIVER DAMAGE 

(CIRRHOSIS) (0.90) AND Total Bilirubin IS LOW (1.00) AND A/G Ratio IS LOW 

(0.56) AND SGOT/SGPT ratio IS NAFLD (SGOT/SGPT < 1) (0.43), VIRAL 

HEPATITIS (SGOT/SGPT = 1) (1.00) THEN class 1: HCC. FL can manage uncertainty 

and precision in data. This is especially useful in medical diagnosis helping doctors in 

decision making. In conclusion, this study presents a novel approach for developing a 

robust HCC risk classification model with high accuracy and interpreted outcomes that 

are easy to understand.  
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CHAPTER I  

 

 

INTRODUCTION 

1.1 ARTIFICIAL INTELLIGENCE IN CANCER RESEARCH 

Cancer is a chronic disease, one of the leading global health burdens, with a high rate 

of incidence and mortality. It is estimated that 10 million cancer deaths occur globally 

and the cancer burden is expected to rise by 60% over the next two decades, reaching 

30 million additional cases by 2040, primarily in low and middle-income countries 

(Anon. 2023). To tackle the current scenario, accurate and timely diagnosis and 

prognosis are crucial for improving survival rates and avoiding the chance of 

recurrence.  

Over the years, artificial intelligence (AI) has been widely applied in cancer 

research in conjunction with sophisticated bioinformatics tools due to its feasibility (S. 

Huang et al. 2020). AI in healthcare refers to computer-coded programs that are similar 

to human cognition, assist the physician in real-time precision medical diagnosis (Iqbal 

et al. 2021), provide clinical decision support to reduce diagnostic and therapeutic errors 

in clinical practice (Jiang et al. 2017).  

On the other hand, machine learning (ML) is a subset of AI. ML algorithms are 

used to extract interesting information based on data trends and make predictions from 

the complex clinical data itself (Alpaydin 2020; Kourou et al. 2015). The potential of 

big data has been exploited using a ML technique to find previously hidden insights in 

medical information (Mostafa et al. 2021) and aid in the decision-making process (B. 

Zhang et al. 2023) with more accurate and personalized information on diagnosis and 

treatment. Supervised machine learning is the typical ML technique used in the AI 

healthcare applications for disease prediction while unsupervised machine learning 
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such as principal component analysis mostly used in the data preprocessing to reduce 

the dimensionality while keeping the information of the features (Jiang et al., 2017). 

ML techniques such as decision tree (DT), gradient boosting (GB), naïve bayes (NB), 

k–nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector 

machine (SVM) and neural networks (NN) have shown promising results in terms of 

cancer prediction and diagnosis in recent research which will be discussed in Chapter 

2.2. Besides that, artificial neural network (ANN) are one of the reliable ML real-time 

screening tools used to detect high-risk individuals, such as in colorectal cancer, with 

low misclassification rate in 6% of positive cases misclassified as low risk and 2% of 

negative cases misclassified as high risk (Nartowt et al. 2020), while pancreatic cancer 

achieved a sensitivity of 80.7% in the risk assessment (Muhammad et al. 2019).  

However, despite the advancements in ML for cancer prediction, which have 

resulted in higher predictive accuracy, the risk of individuals diagnosed with life-

threatening cancer is still growing today, including hepatocellular carcinoma (HCC), 

which will be discussed in section 1.2. In particular, ML risk prediction models such as 

ANN, SVM and RF are seldom deployed into clinical practice for decision making due 

to their black box nature and lack of interpretability(Ahmad et al. 2018).  

 Furthermore, there is no consensus on standard and unified guidelines among 

the healthcare community in the diagnosis process. It is challenging for the practitioner 

to make an early diagnosis of HCC due to the absence of symptoms in the early stages. 

However, this issue could be resolved through regular health screening, including the 

liver function test (LFT) to detect HCC at the earliest and most treatable stage, 

especially for those in the high-risk category. Therefore, HCC risk prediction remains 

a promising research direction that aims to enhance the current ML model by improving 

interpretability with a degree of confidence. 

 

1.2 HEPATOCELLULAR CARCINOMA 

The liver is the largest organ in the human body which is located below the diaphragm 

on the right side of the abdomen as shown in Figure 1.1. It is responsible for many 
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important metabolic functions, it filters toxics from the blood, detoxifies chemicals and 

metabolizes drugs. Liver responsible in the secretion of bile, which effectively removes 

waste products from the liver and exits the body through urine or feces. There are two 

forms of liver cancer: primary and metastatic. Primary liver cancer (PLC) is a type of 

cancer that originates in the liver, whereas metastatic (secondary) liver cancer is cancer 

that has progressed to the liver from somewhere else in the body. PLC can be 

categorized into HCC, cholangiocarcinoma (also known as bile duct cancer) and 

angiosarcoma (Anon. 2022). HCC is the most common type of PLC accounting for 75 

to 85% of the total liver cancer burden worldwide (Bray et al. 2018), ranks sixth globally 

in cancer incidence and third in cancer-related deaths in 2020 (Chakraborty & Sarkar 

2022).  

 

Figure 1.1 Liver placement and HCC 

Source: Anon. 2021 

According to the statistics, over half of the global liver cancer cases and 

mortalities were concentrated in Eastern Asia with China accounting for 45.3% of cases 

and 47.1% of deaths caused by liver cancer (Rumgay et al. 2022). A recent study 

published by the International Agency for Research on Cancer (IARC) reveals that in 

2020, 905,700 people were diagnosed with liver cancer, resulting in 830,200 deaths 

worldwide (Rumgay et al. 2022). IARC projects an alarming trend in liver cancer and 

predicts new cases and fatalities might increase by more than 55% by 2040, totaling 1.4 
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million diagnoses and 1.3 million deaths, if the current trend remains (Rumgay et al. 

2022).  

In Malaysia, HCC is one of the major causes of the mortality rate which 

increased by 31.5% since 1990 (Raihan et al. 2018). Data samples collected from 2006 

to 2009 at the University Malaya Medical Center on 348 HCC patients profiling by Goh 

et al. showed that males are at higher risk than female to be diagnosed as HCC with the 

ratio of 3.4:1 while Chinese (68.7%) are the most afflicted by HCC among 3 races, 

followed by Malays (20.4%) and Indian (10.9%) with the median age of 62.5 years (B. 

Norsa’adah 2013)(Goh et al., 2015).  

According to the Malaysia National Cancer Registry's (MNCR) quinquennial 

report, males are more likely than females to be diagnosed with liver cancer as shown 

in Figure 1.2 (Ministry of Health 2019a). The incidence pattern rate of liver cancer 

among men in 2012-2016 is comparable to that of 2007-2011, with a positive indicator 

that the rate of all age groups is decreasing as in Figure 1.3 (Ministry of Health 2019b). 

However, the analysis showed that the cases diagnosed at stage 3 and stage 4 increased 

from 78.8% in 2007-2011 to 85.4% in 2012-2016 as in Figure 1.4 (Ministry of Health 

2019b). Many studies have further justified that men have a significantly higher 

likelihood of developing HCC compared to women. For instance, in the USA, the male-

to-female ratio is approximately 2.5-3 to 1, whereas in some regions worldwide, this 

ratio can be up to 6 males to 1 female (Sayiner et al. 2019). 
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Figure 1.2 Age-standardized incidence (ASR) rate by year, major ethic group and 

sex in Malaysia, 2007-2011, 2012-2016 

Source: Ministry of Health 2019a 

 

Figure 1.3 Age specific incidence rate in male liver cancer in Malaysia 2007-2011, 

2012-2016 

Source: Ministry of Health 2019b 
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Figure 1.4 Staging in male liver cancer in Malaysia 2007-2011, 2012-2016 

Source: Ministry of Health 2019b 

The survival rate of liver cancer is relatively low even in high-income countries 

like Australia, Denmark, Ireland, New Zealand, Canada, Norway, and United Kingdom 

with highest 1 year and 3-years net survival rate based on the registration on 

International Cancer Benchmarking Partnership from 1995-2014 (Rutherford et al. 

2021). The low long-term survival rate of liver cancer is largely attributed to delayed 

diagnosis due to asymptomatic early stages, resulting in most patients being diagnosed 

at an advanced stage with distant metastases, emphasizing the crucial need for improved 

risk assessment at the early stages (Ginès et al. 2004).  

1.2.1 Causes of Hepatocellular Carcinoma 

HCC begins in cells called hepatocytes (Anon. 2024) primarily afflicting individuals 

with pre-existing chronic liver conditions, especially fibrosis and cirrhosis, which are 

commonly caused by chronic liver inflammation, as shown in Figure 1.5. Extensive 

scarring of the liver (fibrosis) will eventually cause cirrhosis. In other words, when the 

liver is inflamed, it looks for ways to heal itself, but this causes the formation of scars 

(fibrosis), eventually causing irreparable liver damage. Hepatitis B viruses (HBV), 

hepatitis C viruses (HCV), aflatoxin B1 exposure, excessive alcohol use, and diseases 

such as diabetes and obesity are all major causes of chronic liver inflammation. 
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Additionally, aflatoxin B1 exposure, excessive alcohol consumption, and 

conditions like diabetes and obesity are significant factors contributing to chronic liver 

inflammation. The relative risk of developing malignancy is highest in those patients 

with chronic HBV (56%) while HCV with relatively less (20%) (Maucort‐Boulch et 

al. 2018). Besides that, aflatoxins are powerful carcinogens found on moldy crops like 

peanuts, corn, and other nuts and seeds, especially when they are stored in warm and 

humid conditions. High rates of HCC are frequently associated with extensive aflatoxin 

exposure, and work in combination with chronic HBV infection. (Gouas et al. 2009). 

On the other hand, there is substantial evidence to prove that alcohol intake, 

obesity, and type 2 diabetes work together to elevate the risk of HCC (Bertot & Adams, 

2019; Hassan et al. 2002; Marrero et al. 2005). The rising epidemics of obesity and 

diabetes have been observed in Asia and Western countries. The growth of obesity, 

diabetes, and, consequently, Non-alcoholic fatty liver disease (NAFLD) in Asians is 

being caused by the shift towards a sedentary lifestyle and dietary habits leaning 

towards overnutrition (Bertot and Adams 2019; Hashimoto et al. 2012; Okanoue et al. 

2011; Wong et al. 2011). NAFLD is identified by the presence of excess fat 

accumulated in the liver (steatosis) without any inflammation or damage to the liver 

cells.  

On the other hand, non-alcoholic steatohepatitis (NASH) is indicated by liver 

inflammation and the potential for development to fibrosis, cirrhosis, and, finally, HCC. 

The global prevalence of NAFLD including its advanced form, NASH in HCC is 

becoming significant (Ozakyol 2017) even though the current burden of HCC 

worldwide focuses on HBV and HCV (Bertot & Adams 2019). Several studies have 

shown that HBV, followed by cryptogenic causes such as NAFLD and NASH is the 

predominant cause of HCC in Malaysia which is closely related to the increasing rate 

of obesity and diabetes (B. Norsa’adah 2013; Goh et al. 2015; Raihan et al. 2018). 
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Figure 1.5 Development of HCC 

Source: Macek Jilkova et al. 2019 

1.3 DIAGNOSIS AND TREATMENT OF HEPATOCELLULAR CARCINOMA 

The diagnosis of HCC has been mainly based on blood screening, imaging tests such 

as ultrasound, computed tomography (CT) scan and magnetic resonance imaging (MRI) 

scan and also procedure like liver biopsy. The procedure for diagnosing and treating 

HCC as shown in Figure 1.6. 

First and foremost, the routine liver function test (LFT) is the fundamental 

screening for the early detection of any kind of liver damage and liver disease. LFT 

included parameters such as total bilirubin, direct bilirubin, alkaline phosphatase (ALP), 

alanine aminotransferase (SGPT), aspartate aminotransferase (SGOT), albumin, total 

protein and albumin/globulin ratio (A/G Ratio). Each of the components in LFT plays 

a crucial role that aids the doctors in monitoring and evaluating the patients’ liver 

conditions. If a patient has an abnormal range of LFT, the practitioners will conduct a 

risk assessment to identify those who are at high risk of developing HCC.  

Patients with cirrhosis, chronic HBV or HCV, a family history of liver disease, 

excessive alcohol consumption, obesity, and diabetes were among the high-risk groups. 

These high-risk populations will proceed to imaging diagnosis. For those patients who 

are not in the high-risk group will have a follow-up with their doctor. The decision on 

whether to proceed with image diagnostics in low-risk patients depends on the clinical 

judgement during the follow-up.  
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Following the risk assessment, an abdominal ultrasound test will be conducted 

as the following step in HCC diagnosis. When there is a suspicious lesion on the 

ultrasound. Further investigation such as CT or MRI scan is required to provide more 

detailed imaging of the tumour. However, if the imaging result is still inconclusive, the 

invasive approach of liver biopsy needs to be applied. Subsequently, staging and 

treatment options for HCC will be based on the imaging or liver biopsy result. 

Tumour staging and treatment decisions of HCC patients are made based on the 

Child-Pugh score and Barcelona Clinic Liver Cancer (BCLC). The Child-Pugh score is 

used to predict mortality during surgery and assess the severity of liver disease in 

patients with liver cirrhosis (Pugh et al. 1973). The score considers five essential 

criteria, three of which measure the synthetic function of the liver (bilirubin, albumin, 

and prothrombin) and two of which are based on clinical assessment (ascites and 

encephalopathy). Child-Pugh grade is calculated by summing the scores for each 

criterion, with Grade A representing least severe liver disease (5-8 points), Grade B 

representing moderately severe liver disease (9-11 points) and Grade C representing 

most severe liver disease (12-15 points) (Durand & Valla 2005). 

Furthermore, BCLC is a classification system that seeks to determine patient 

prognosis, as well as recommends specific treatment algorithms based on HCC tumour 

stage, liver function and patient performance (Reig et al. 2022). BCLC applied the 

treatment stage migration (TSM). TSM emphasizes customizing treatment based on 

patient profile; when the standard first-line treatment is unfeasible, practitioners may 

deviate from the standard recommendations on BCLC, transitioning to a more advanced 

stage treatment (Reig et al. 2022; Tsilimigras et al. 2022).  
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Figure 1.6 Flow diagram on diagnosis and treatment of HCC 
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1.4 PROBLEM STATEMENT 

HCC is a highly fatal tumour and remains a global health concern. It is challenging for 

physicians to make an early diagnosis of HCC due to the absence of symptoms in the 

early stages. The overall HCC incidence is predicted to rise in the coming years due to 

demographic factors in terms of population growth and aging (Akinyemiju et al. 2017). 

There are a growing number of HCC risk predictions using ML techniques, but they 

exhibit limitations in terms of robustness and interpretability. In the medical field, lack 

of interpretability is the bottleneck for clinicians to use ML models as it may cause 

adverse consequences if the predictive output is not explained accurately (Ahmad et al. 

2018). Therefore, enhancing the existing ML predictive model with a degree of 

confidence in assessing the risk of HCC development is necessary. Each of the features 

and the predictive output should be comprehensible to the targeted end-user which are 

the physicians from a domain perspective. 

 The use of fuzzy logic (FL) as a reasoning tool are known in manufacturing and 

robotics, but not yet in medical. Therefore, a FL approach could be applied to ML 

models to address the uncertainties in the classification results. FL acts as a decision 

support tool, incorporating a clinical prediction rule to improve HCC risk management 

more effectively. Moreover, FL provides valuable flexibility for reasoning to solve the 

interobserver agreement among doctors, as clinical decisions are often taken based on 

doctors’ perceptions and experiences. Additionally, FL improves the diagnostic 

precision in the risk classification model. 

1.5 RESEARCH OBJECTIVES 

1. To suggest the optimal ML model for HCC risk classification. 

 

2. To optimize the HCC risk classification model. 

 

3. To improve the explainable component of HCC risk classification model with 

FL. 
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1.6 RESEARCH SCOPE  

This study focused on developing an HCC risk prediction model utilizing blood test 

results of liver function such as total bilirubin, direct bilirubin, ALP, SGOT, SGPT, 

albumin, total protein and A/G Ratio, and demographic data such as age and gender. In 

addition, the research adopts a rule-based system to enhance the prediction with 

confidence level. The study will utilize an existing dataset from Kaggle to evaluate the 

proposed approach. 

1.7 RESEARCH ORGANIZATION 

Chapter 1 introduces the research background of ML in cancer research and HCC with 

their causes, diagnosis, and treatment process. It also includes the problem statement, 

research objective, and research scope. 

Chapter 2 reviews the relevant past research on HCC risk classification. It 

covers the rule-based and non-rule-based techniques used in the paper, evaluation 

metrics to assess the model performance, challenges in the ML classification models, 

and explores the FL approach to enhance the interpretation of classification outcomes. 

Chapter 3 discusses in detail the application of data preprocessing methods to 

prepare the data for modelling. 

Chapter 4 explains in detail the process of data modelling. It covers model 

training, testing, hyperparameter tuning, evaluation of the model performance, and rules 

extraction from the best model.  

Chapter 5 focuses on the logical reasoning behind the classification results with 

the FL approach. It provides a detailed explanation of procedures for FL. 

Chapter 6 is the summary of the research work with their outcomes. It also 

addresses the limitations encountered and future works to further enhance the current 

proposed model. 
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1.8 CHAPTER SUMMARY 

Regular health screening, including the liver function test (LFT) is one of the 

approaches for all individuals to detect HCC at the earliest and most treatable stage, 

especially for those in the high-risk category. Nevertheless, the existing classification 

models often lack interpretation of the outcome. Therefore, this research aims to 

improve the current machine learning model by using an FL technique to offer 

understandable predictive results along with a level of confidence.  
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CHAPTER II  

 

 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Supervised ML is frequently used for disease classification problems (Sharma & Rani 

2021) such as classifying tumours based on clinical criteria. Supervised ML allows the 

model to learn through the labelled data and train the algorithm to accurately predict the 

output for the new dataset based on the “reference” which is the generalized pattern 

discovered during the learning process. The application of ML could help practitioners 

detect symptoms of HCC earlier and make more accurate diagnoses. 

In this chapter, we discuss the past and relevant studies on HCC risk 

classification models using clinical data such as LFT and other variables. A variety of 

variables have been researched to equip clinicians with a reliable tool for HCC early 

detection. The parameters used are those easily obtained from routine laboratory data 

such as alpha-fetoprotein (AFP), albumin, platelet, total bilirubin, alkaline phosphatase 

(ALP), gamma-glutamyl transferase (GGT), aspartate transaminase (SGOT), and others 

(Feng et al., 2023). Lastly, the chapter concludes the ML techniques with other 

approaches that will be used in this project. 

2.2 PAST RESEARCH ON CLASSIFICATION OF HEPATOCELLAR 

CARCINOMA RISK 

Książek et al. (2020) proposed a novel ML model for HCC early detection that uses 

ensemble learning to merge seven models into one, including KNN, RF, NB, LR, and 

three additional classifiers. Książek et al. trained the models based on 165 HCC patients 

with 49 clinical features including the LFT, demographic, and other variables. Their 

approach achieved an accuracy of 0.9030 and an F1-score of 0.8857 (Książek et al. 
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2020). On the other hand, the same dataset has been applied in the study by Santos et 

al. (2015) to predict the survival rate among HCC patients. LR and NN were tested, and 

the results showed that NN performed better than LR in the synthetic minority over-

sampling technique (SMOTE) oversampling approach with an accuracy of 0.717 and 

0.706 respectively.  

Two studies have reported that the RF classifier has the best performance among 

other algorithms with accuracy = 0.762, recall = 0.843, F1-score = 0.775, and AUC = 

0.999 in (Ding et al. 2022) and an accuracy score of 98.14% in (Mostafa et al. 2021). 

Ding et al. used ML algorithms such as regularized regression, LR, RF, DT, and 

extreme gradient boosting (XGBoost) to identify 14 significant risk factors based on the 

basic blood tests of 525 patients. The risk factors are listed in descending order based 

on their importance: total bilirubin, GGT, direct bilirubin, haemoglobin, age, platelet, 

ALP, SGOT, creatinine, SGPT, cholesterol, albumin, urea nitrogen, and white blood 

cells (Ding et al 2022). Similarly, the study by Mostafa et al. applied SVM, RF, and 

ANN and identified five crucial indicators: AST, ALT, GGT, bilirubin, and ALP in 

predicting liver disease based on the blood results from 615 individuals.  

Furthermore, Sato et al. (2019) developed an HCC predictive model based on 

clinical data collected at the University of Tokyo Hospital.  The study involved 4242 

patients from two groups: those diagnosed with HCC initially and those who tested 

positive for HBV and later developed HCC. The clinical data examined included the 

biomarkers of liver inflammation, liver fibrosis, liver function, and hepatitis virus status 

(Sato et al. 2019). Various algorithms like LR, SVM, RF, GB, NN, and deep learning 

were employed. The result showed that GB achieved the highest accuracy (87.34%) and 

area under the curve (AUC) of 0.940 (Sato et al. 2019). 

An et al. (2021) developed an ML-based model to predict the risk of HCC 

development in the Korean cohort using health screening examination results. An et al. 

identified several predictors associated with increased or decreased risk, including age, 

sex, obesity, LFT, family history, chronic liver diseases, and other health condition. ML 

models used such as Random survival forest (RSF) and XGBoost while XGBoost 
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showed promising results with an AUC of 0.882 and a standard deviation of 0.013 (An 

et al. 2021).  

In addition, Chicco and Oneto (2021) used ML methods such as DT, RF, SVM 

and multilayer perceptron network with dropout (MLP) to predict survival and identify 

key clinical factors for HCC from 165 patients with 50 features and concluded that ALP, 

AFP, haemoglobin to be most crucial predictors. RF achieved accuracy of 0.772 and 

AUROC of 0.766. However, there are some drawbacks in the research, included only 

using the data from a hospital and lacking survival time feature (Chicco & Oneto, 2021). 

Therefore, their future plans involve validating findings with alternative datasets and 

applying the approach to other diseases and high-throughput sequencing data (Chicco 

& Oneto, 2021). 

Wong et al. (2022) reported that a novel HCC-ridge score model correctly 

predicted chronic viral hepatitis patients based on a large cohort of 124006 patients in 

Hong Kong. RF with AUROC of 0.992 outperformed LR, adaptive boosting 

(AdaBoost), DT, and ridge regression. It is further validated with an external cohort of 

4462 Korean patients with an AUROC result greater than 0.8 for all the models except 

the DT (0.799) result (Wong et al. 2022). Nonetheless, it is challenging to deal with a 

large amount of data from multiple centres because there consists of lots of missing data 

and inconsistent intervals of the laboratory measurements which may lead to bias 

(Wong et al. 2022).  

Besides that, clinical data is useful not only for developing a model for HCC 

early detection and prediction but also for predicting recurrence after surgical resection. 

Y. Huang et al. (2021) carried out research that utilized clinical information from 7919 

post-hepatectomy patients from 2 different hospitals which encompassed demographic 

details, blood test findings like AFP, GGT, total bilirubin, albumin, hepatitis virus 

indicator, tumour traits, and additional parameters. Y. Huang et al. utilized a heat map 

to personalize recurrence risk and identified key prognostic variables specific to 

different time intervals after surgery. Based on the ML results on Deep Learning-based 

Survival Model, XGBoost, and RSF. They found that XGBoost to be the most effective 

with c-index: 0.713, P < 0.05.  
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Table 2.1 Summary of literature on HCC risk classification 

Authors Data Source Classifiers Results 

Książek et 

al. 

165 HCC patients 

with 49 clinical 

features including the 

LFT, demographic, 

and other variables. 

Ensemble of 7 classifiers 

such as KNN, RF, NB, LR, 

and other 3 classifiers. 

Accuracy of 0.9030 and F1-

score of 0.8857. 

Książek et 

al. 

165 HCC patients 

with 49 clinical 

features including the 

LFT, demographic, 

and other variables. 

LR and NN. Accuracy of 0.717(NN) and 

0.706 (LR). 

Ding et al. Basic blood tests of 

525 patients. 

Regularized regression, LR, 

RF, DT, and XGBoost. 

RF achieved accuracy = 0.762, 

recall = 0.843, F1-score = 

0.775, and AUC = 0.999. 

Mostafa et 

al. 

Blood results from 

615 individuals. 

SVM, RF, and ANN RF with highest accuracy 

score of 98.14% 

Sato et al. Blood results of 4242 

patients from two 

groups: those 

diagnosed with HCC 

initially and those 

who tested positive 

for HBV and later 

developed HCC. 

LR, SVM, RF, GB, NN, 

and deep learning. 

GB achieved the highest 

accuracy 0.8734 and AUC of 

0.940. 

An et al. Health screening 

results of Korean 

cohort.  

RSF, and XGBoost. XGBoost showed promising 

results with an AUC of 0.882 

and a standard deviation of 

0.013. 

Chicco and 

Oneto 

165 HCC patients 

with 50 features 

DT, RF, SVM, and MLP. RF achieved accuracy of 

0.772 and AUROC of 0.766. 

Wong et al. 124006 chronic viral 

hepatitis patients. 

External cohort of 

4462 Korean 

patients. 

RF, LR, AdaBoost, DT, and 

ridge regression. 

RF with AUROC of 0.992. 

External validation with 

AUROC result greater than 

0.8 for all the models except 

the DT (0.799). 

Y. Huang 

et al. 

Blood test results of 

7919 post-

hepatectomy patients. 

Deep Learning-based 

Survival Model, XGBoost, 

and RSF. 

XGBoost with c-index: 0.713, 

P < 0.05. 

 

2.3 RULE-BASED ML TECHNIQUES 

Based on the past research ON HCC classification discussed in Chapter 2.2. We notice 

that rule-based classifiers such as DT and RF are applied in most of the studies. Thus, 

we will discuss each of the rule-based techniques. 
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2.3.1 Decision Tree Classifier 

DT classifier is frequently used in classification systems to attribute type information, 

as well as predictive systems, where the predictions are based on previous data and 

contribute to drive the structure of the decision tree and the output (Saouabi & Ezzati 

2020). DT requires minimal data preparation; it can handle both numerical and 

categorical data and is easily interpreted. A DT algorithm is used in classification by 

dividing the data into classes consisting of three components root node, branch (edge 

or link), and leaf node. DT starts from the root node at the top of the tree and is split 

into branches that contain all possible outcomes for the test and then further divided 

into leaf nodes containing the label of the class to which it belongs.  

Techniques such as information gain, Gini index, and entropy are used to split 

the data into different nodes (Sen et al. 2020). Entropy represents randomness in 

features, it measures the discriminatory capability of an attribute for classification 

problems (Sen et al. 2020). Information gain measures the expected reduction in entropy 

(uncertainty) by calculating the difference of the entropy at the parent node and the 

entropy of the weighted average of the child node (Krishnan 2021). 

2.3.2 Random Forest Classifier 

RF classification makes predictions using an ensemble of decision trees (Breiman 

2001). It is built by taking random samples of the actual data and then constructing an 

ongoing series of decisions trees on the subsets and lastly aggregate the results to predict 

each observation (Speiser et al. 2019). RF collects class votes from each tree and uses 

a majority vote for classification (Hastie et al. 2009). In RF, the more the decision trees 

are used with different criteria, the better the RF performs. As a result, RF usually has 

high predicted accuracy when compared to other models while also reduce overfitting 

in the training data.  

2.4 NON-RULES-BASED ML TECHNIQUES 

Non rules-based model are also popular among the disease classification such as SVM, 

LR, KNN, NB, GB and NN. 
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2.4.1 Support Vector Machine Classifier 

The SVM algorithm is widely used in classification tasks for linear and non-linear data. 

SVM creates the optimal line or decision boundary known as a hyperplane that can 

segregate data points in n-dimensional space into two classes in training data, allowing 

the new data point can be easily classified in the correct category in the future (Sen et 

al. 2020). The maximum margin creates the greatest possible distance between the 

separating hyperplane and the nearest instances from either side (Kotsiantis et al. 2007). 

Support vectors, also known as extreme points, are the data points that lie on the optimal 

hyperplane as shown in Figure 2.1.  

 

Figure 2.1 Hyperplane in SVM 

Source: Saini 2024 

SVM is suitable for the large dataset with many features as the SVM only 

chooses the minimum number of support vectors, hence, the complexity of the SVM is 

unaffected by the number of features in the training samples. However, the real-world 

data are always complex and noisy, this will cause a situation where SVM is unable to 

find a hyperplane to separate the classes correctly. Consequently, this led to 

misclassifying the instance where the data points are located on the wrong side of the 

hyperplane. Thus, a more flexible approach called soft margin is introduced to achieve 

a balance between the maximal margin and some misclassifications on the training data 

(Kotsiantis et al. 2007). 

Besides that, a kernel function is used if the data is not linearly separated. Kernel 

function transforms the original feature space (non-linear) into a higher dimensional 
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space where data might become linearly separated (Kotsiantis et al. 2007). By applying 

kernel function onto non-linear data, SVM can define the optimal hyperplane for 

classification.  

2.4.2 Logistic Regression Classifier 

LR is one of the regression methods in classification for predicting the probability of 

presence or absence of a dichotomous (binary) dependent variable based on one or more 

predictor independent variables (Kurt et al. 2008).  

LR calculate the coefficient (weights) and the intercept (bias term) to linearly 

combine the input features in the training data. Each weight, wi is a real number 

associated with a specific input feature, xi representing its importance in the 

classification decision. The bias term, βi is another real number added to the weighted 

inputs. The classifier multiplies each feature by its weight, sums up the weighted 

features, and adds the bias term. The resulting number z represents the weighted sum 

of evidence for the class is as Equation 2.1. 

Z = 𝛽0   + 𝑤1𝑥1 +  𝑤2𝑥2 + … +  𝑤𝑛𝑥𝑛 (2.1) 

Maximum likelihood estimation is used estimate the optimal parameter (weights 

and bias term) in the LR, which maximize the likelihood of observing the data given 

the model (Hosmer et al. 2013). Then, the probability of the output prediction is 

determined using logistic function also known as sigmoid function. The s-shaped 

sigmoid curve fits the predicted probability in the desired range between 0 and 1. Lastly, 

the classification of the outcome is based on the decision threshold or boundary by 

comparing the predicted probability to a threshold.  

In medical diagnosis, LR can determine what has an influence on whether a 

certain disease is present or not. For example, we could study the influence of 

independent variables such as age, gender, and laboratory results on that particular 

disease and predict how likely a person will have a certain disease. 
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2.4.3 K-Nearest Neighbour Classifier 

KNN is known as a lazy learning algorithm as the generalization beyond the training 

data is delayed until a new instance is provided to the system (Kotsiantis et al. 2007). It 

is a pattern recognition method that finds the k closest relatives in future cases by using 

training datasets. When k = 1, the class of the training tuple closest to the unknown 

tuple in pattern space is assigned to it. The k smallest distances are identified, and the 

most represented class in these k classes is considered the output class label. Cross-

validation is commonly used to find the value of k. KNN is easy to implement and is 

effective, especially for large training data that contain lots of noise. However, it is quite 

time-consuming as the calculation of the distance from k neighbours needs to repeat for 

every new instance. 

2.4.4 Naïve Bayes Classifier 

NB classifier is a simple probabilistic classifier that uses the Bayes theorem by strongly 

assuming each attribute variable as an independent variable (Rish 2001). The 

classification is done by the Bayes principle to calculate the probability of class name 

Y, given that the particular instance X by the formula as in Equation 2.2.  

P (Y|𝑋) =  
𝑃 (𝑋 |𝑌) ∗ 𝑃 (𝑌)

𝑃 (𝑋)
 

(2.2) 

NB is an effective method because it focuses on identifying the most probable 

class rather than perfectly modelling the underlying distribution, allowing it to perform 

well even in scenarios where features are dependent on each other (Rish 2001). Besides 

that, NB remains strong even when dealing with missing attributes, as it considers all 

attributes when making predictions and this leads to a gradual decline in performance 

rather than a sudden drop (Webb et al. 2010).  

Furthermore, Gaussian Naïve Bayes (GNB) is the extension of NB. The GNB 

is suitable for continuous input data that follow a normal or Gaussian distribution where 

the mean and standard deviation are calculated based on each class (Kamel et al. 2019). 
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The GNB is effective in supervised learning and complex real-world situations in 

medical diagnosis (Kamel et al. 2019). 

2.4.5 Gradient Boosting Classifier 

GB is a well-known algorithm used for classification tasks. GB uses ensemble methods 

to combine several weak learners into a strong learner through iteration (Bentéjac et al. 

2021). It is called GB because it uses gradient descent to minimize the loss when adding 

new learners to the ensemble. However, the GB classifier may face overfitting issues if 

the iterative procedure lacks proper regularization (Friedman 2001). 

The cycle of GB as illustrated in Figure 2.2. The process start with the prediction 

based on the naïve model. Then, the gradient of the loss function such as mean squared 

error is calculated based on the current prediction. Subsequently, a new weak model 

will be trained based on the calculated loss from the previous prediction. After that, the 

new model is added to ensemble and make the prediction again. This cycle continues 

as more models are added to the ensemble to enhance the prediction. 

 

Figure 2.2 GB cycle 

Source: Cook 2018 

On the other hand, XGBoost is the most popular implementation of GB, it is the 

top winning solution for many Kaggle competitions (Chen & Guestrin 2016). XGBoost 

is a decision tree ensemble based on a GB designed to push the extreme of the 

computation limits of machines to be highly scalable and accurate (Chen & Guestrin 

2016). The XGBoost apply regularization technique such as L1 and L2 to avoid 

overfitting.  
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2.4.6 Neural Network: Multilayer Perceptron Classifier 

The MLP is one of the widely used feedforward NN models (G. P. Zhang 2000). An 

MLP consists of one input layer, one or multiple hidden layers, and one output layer as 

shown in Figure 2.3. Backpropagation is a popular supervised learning algorithm for 

training feedforward NN. Backpropagation is a learning approach that includes 

iteratively processing a dataset of training tuples, comparing the network's prediction to 

the actual known target value, and adjusting weights to reduce the mean-squared error 

between predictions and the target value (Han et al. 2012). 

The process starts with the input x arriving through the preconnected path. The 

input is modelled using randomly selected real weights, W. Next step is to use the 

activation function to calculate the output for every neuron that passed through the input 

layer to the hidden layers, to the output layer. Then, error (Error = Actual Output – 

Desired Output) is calculated in the output using the loss function such as mean-squared 

error. Lastly, travel back from the output layer to the hidden layer to adjust the weights 

such that the error is decreased to reduce network error. 

 

Figure 2.3 Backpropagation in MLP 

Source: Johnson 2024 

2.5 EVALUATION METRICS IN CLASSIFICATION MODEL 

Evaluation metrics such as accuracy, F1-score, recall, precision, confusion matrix and 

area under the receiver operating characteristic (AUROC) will be used to evaluate the 

performance of the trained models. While the most effective predictive model is chosen 

among those with the best overall performance.  
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1. Accuracy: Total number of the correctly predicted class divided by the total 

instances. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2.3) 

2. F1 Score: Combined measure of precision and recall, providing a balanced 

assessment. 

F1-score = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (2.4) 

3. Recall: Also known as sensitivity or true positive rate, measures the total 

number of actual positive class that are correctly identified by the model.  

Recall = 
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (2.5) 

4. Precision: Ratio of predicted positive instances that are actual positive to the 

total number of positive instances predicted by the model. 

Precision = 
TP

𝑇𝑃+ 𝐹𝑃
 (2.6) 

5. Confusion Matrix: A thorough summary table as shown in Figure 2.4, consists 

of true positive (TP), true negative (TN), false positive (FP) and false negative 

(FN). It is useful for visualizing a model’s accuracy, f1-score, recall and 

precision. 

 

Figure 2.4 Confusion matrix 

Source: Arora 2019 

6. AUROC is the area under the ROC curve. ROC curve as shown in Figure 2.5 is 

a comprehensive performance measure that evaluates the accuracy of a model's 

predictions across all potential classification thresholds: true positive rate (TPR) 
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and false positive rate (FPR). AUROC is useful in binary classification where it 

can distinguish between different classes. 

 

Figure 2.5 ROC curve 

Source: Anon 2024 

2.6 CHALLENGES IN HCC RISK CLASSIFICATION MODELS 

According to Calderaro et al. (2022), the current AI algorithms suffer from significant 

drawbacks, such as limited interpretability of results, overfitting, and potential poor 

generalization due to their reliance on training data size and diversity. Besides that, the 

healthcare sector is currently still reserved in providing incentives for data exchange 

across different hospitals (Jiang et al. 2017), making obtaining of large-scale real-world 

datasets difficult. This might be to ensure the confidentiality and privacy of patients.  

Furthermore, despite the increasing number of AI studies in healthcare, the 

implementation of these ML models in clinical practice remains limited due to a lack 

of comprehension of the predictions. The adoption of an interpretable ML model is 

important in healthcare as it ensures clinicians understand how the predicted outcomes 

relate to each of the attributes in the ML models. Moreover, interpretable ML models 

provide clinicians with reasons to accept or reject forecasts and recommendations by 

explaining the logic behind them. This is necessary as decisions made by healthcare 

providers directly impact the well-being of individuals, highlighting the need for 

thoughtful consideration.  
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2.7 FL APPROACH  

In order to enhance the interpretability of the classification model, we could apply FL. 

FL was first proposed by Lotti Zadeh in 1965, it is an extension from the traditional 

Boolean logic with binary true (1) or false (0). FL provide a way to model logical 

reasoning with a degree of truth that ranges from 0, which is absolutely false, to 1, that 

is absolutely true. Fuzzy refers to something which is unclear or vague, while FL allows 

us to design a fuzzy inference system, which is a function that maps a set of inputs to 

output using human-interpretable rules rather than more abstract mathematics. The 

architecture of FL system as shown in Figure 2.6. 

 

Figure 2.6 FL architecture 

Source: Kumar 2019 

A FL system is made up of 4 basic components which are fuzzification, rule 

base, inference engine and defuzzification. Fuzzification is used to transform the crisp 

input into fuzzy input values. It is done by mapping the crisp values to a value in the 

fuzzy subset in a membership functions. These membership functions assign a degree 

of membership in the value range of [0,1] to the crisp value.  

On the other hand, the rule base contains a set of fuzzy rules with the if-then 

conditions defined by the experts based on the basis requirement. The “if” also known 

as antecedent relates to the input side membership functions while the “then” also 

known as the consequent relates to the output side membership functions. Then, 

inference engines evaluate the fuzzy rules by determining the degree of truth or 

membership of the fuzzy inputs in each rule to generate fuzzy output. There are two 

common approaches in determining the degree of truth, take the minimum membership 

degree when the fuzzy operator is AND whereas take the maximum membership degree 
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when the fuzzy operator is OR. Lastly, defuzzification take place to convert the 

aggregated fuzzy output values from the inference engine to a single crisp output.  

FL has been applied in many sectors such as in chemical science, agriculture, 

political science, environment science, household, operation research and healthcare 

industry (Makkar & Makkar 2018). An example of the application of FL in healthcare 

by Warren et al., who proposed a decision support system to automate clinical practice 

guidelines such as the imprecision in language description, lack of selectivity and 

sensitivity in medical examinations (Hayward & Davidson 2003). With fuzzy methods, 

the likelihood estimates from the test report can be handled as membership values and 

act as a weighted average in the decision making process (Hayward & Davidson 2003). 

Moreover, Mammadova et al has proposed a fuzzy rules-based system for HCC staging 

(Mammadova et al. 2021). Obot and Udoh (2011) applied fuzzy diagnosis on 10 

hepatitis A patients by determining the exact degree of hepatitis on a patient. Uzoka et 

al. (2011); Zahan (2001) also apply fuzzy logic in diagnosis of malaria, and myocardial 

respectively. 

2.8 CHAPTER SUMMARY 

In this chapter, we have explored past research papers on HCC classification based on 

clinical data. Supervised ML techniques included rule-based and non-rule-based used 

in the previous research as presented in Chapter 2.3 and 2.4. Researchers are using 

various classifier models classifier models such as SVM, DT, RF, LR, GB, GNB, KNN, 

and NN to make the prediction and compared the results to get the best predictive 

models. Most of the studies have shown promising results in terms of accuracy.  

Nonetheless, the application of these highly accurate predictive models in 

clinical practice remains quite restricted. The foremost factor is the fact that these HCC 

classification models lack interpretation in their results. Therefore, it has motivated us 

to use the FL approach to improve the interpretability of predictive models because FL 

can deal with ambiguity in the data. Even though the FL approach has been widely 

adopted in the field of engineering, it is still quite novel in medicine. By integrating the 

FL approach with the classification model, we could gain valuable insight into the 
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model results in a clear and understandable manner based on logical reasoning. FL aids 

physicians in making better decisions on identifying the risk of HCC. 

Aside from that, most of the studies used a lot of variables available in the 

electronic medical record that consist of a combination of laboratory result and other 

HCC etiologies. However, developing predictive models with a wide range of variables 

will increase the model complexity and reduce efficiency. Hence, we aim to simplify 

the model by focusing on only using the most important and fundamental parameters 

(liver function results) to predict the risk of an HCC patient. 

In addition, it is challenging in acquiring vast volumes of medical data due to 

the confidentiality of sharing patients’ information. Consequently, most of the models 

are trained with a limited dataset and without external validation. This will bring up 

concerns regarding overfitting and generalization when dealing with new data, even if 

the predictive model's accuracy is high. To tackle these issues, our study will use a large 

amount of data acquired from the Kaggle. In the following chapter, we will discuss the 

whole development process from data analysis, and preprocessing to model training, 

testing, and implementation of FL in detail.  

 

Pus
at 

Sum
be

r 

FTSM



 

 

CHAPTER III  

 

 

METHODOLOGY 

3.1 INTRODUCTION 

The real-world data often gathered from multiple and heterogeneous sources, contains 

large number of missing values, noises, and outliers. Poor data quality can lead to a 

decline in the performance of classification models. Accuracy, completeness, 

consistency, timeliness, credibility, and interpretability are all indicators of good data 

quality (Han et al. 2012). Data cleaning and pre-processing are fundamental to ensure 

data quality and prepare for modelling. While data visualization techniques such as 

plotting are effective techniques to access the distribution of each attribute, gaining 

insight into the data before cleaning and pre-processing. The flow chart of data 

preprocessing for this project is illustrated in Figure 3.1. 

 

Figure 3.1 Flow chart of data preprocessing 
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3.2 DATASET 

The dataset used in this project is taken from Kaggle (Shrivastava 2021). This dataset 

consists of 30691 LFT records of HCC and non-HCC patients. There are 583 of the 

records are collected from Northeast of Andhra Pradesh, India by (Ramana et al.2012). 

The feature definition in Table 3.1 provides a more in-depth understanding of 

each feature's domain knowledge. 

Table 3.1 Features definition in HCC dataset 

Feature Name Data Type Definition 

Age_of_the_patient Discrete The patient's age 

Gender_of_the_patient Nominal The patient's gender 

Total_Bilirubin Continuous Bilirubin is a brownish yellow pigment waste 

product produced during the normal breakdown 

of red blood cells.  

 

Total bilirubin is the sum of all forms of bilirubin 

in the blood, including both conjugated (direct) 

and unconjugated (indirect) bilirubin. It is a 

general marker of liver health. High level of 

bilirubin may be caused by the blockage of bile 

ducts or liver damage. 

 

Unconjugated bilirubin is water insoluble. In 

order for it to move through the circulation it 

must be bound to albumin. 

Direct_Bilirubin Continuous It is the water-soluble form of bilirubin that has 

gone through a process known as conjugation in 

the liver. The conjugated bilirubin is excreted into 

bile and then released into the small intestines, 

finally eliminate as feces.  

Alkphos_Alkaline_Phosphotase 

(ALP) 

Discrete An enzyme located in the bile duct within the 

biliary system, bones, and placenta of a pregnant 

women. It is important for breaking down 

proteins. Raised ALP may indicate cholestasis, 

which means reduction or blockage in the flow of 

bile within the biliary system. It may also 

increase bone breakdown or during pregnancy. 

Sgpt_Alamine_Aminotransferase 

(SGPT) 

Discrete An enzyme mainly found in the liver that 

converts proteins into energy for the liver cells. 

SGPT in the blood will be raised when the liver 

is damaged in the form of hepatitis or 

inflammation. 

  to be continued… 
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… continuation   

Sgot_Aspartate_Aminotransferase 

(SGOT) 

Discrete An enzyme that helps the body break down amino 

acids. It is presents in various part of human 

organ like liver, heart, kidneys, brain, muscles 

and red blood cells. SGOT is usually present in 

blood at low levels. An increase in SGOT levels 

may mean liver damage, liver disease or damage 

in other organs like heart or muscles. 

Total_Proteins Continuous The sum of all proteins present, including 

albumin and globulins. 

Albumin Continuous A specific type of protein that is synthesized by 

the liver. Albumin levels used as a marker of liver 

function and nutritional status. Low albumin 

levels may indicate liver disease (cirrhosis), 

malnutrition, or kidney disease. High albumin 

means dehydration. 

Albumin_and_Globulin_Ratio 

(A/G Ratio) 

Continuous A general indicator for checking liver function 

(albumin) and the immune response of the body 

(globulin). Low A/G ratio usually associated with 

liver disease, kidney disease, chronic infection, or 

malnutrition. High A/G ratio is due to severe 

dehydration or diarrhoea. 

Result Discrete  1 represents the patient is diagnosed as HCC. 

2 represents the patient is not diagnosed as HCC. 

 

3.3 DATA ANALYSIS 

3.3.1 Visualization of Numeric Features  

a. Box Plot 

Box plot visually presents the distribution and skewness of the numerical features by 

measuring the quartiles, interquartile range (IQR), percentiles and central tendency such 

as median (Han et al. 2012). IQR measured the distance between first quartile (Q1, 25% 

of the data) and third quartile (Q3, 75% of the data). In other words, IQR shows the 

middle 50% of the data. The line that split the box is the median of the data. 

Furthermore, the horizontal line extended from Q1 is known as lower whisker while 

extended from Q3 is known as upper whisker, The circle outside both the lower and 

upper whisker are the outlier. 
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The box plot of 9 numeric features as shown in Figure 3.2. Age_of_the_patient 

with the mean age of 44.11 and Total_Proteins were slightly negatively left-skewed 

distribution as the median closer to Q3. Both features have very few outliers.  

On the other hand, Albumin showed slightly right-skewed distribution with 

longer upper whisker. Total_Bilirubin, Direct_Bilirubin, ALP, SGPT and SGOT were 

positively right-skewed distribution where the median is significantly closer to Q1. 

These five variables have a wider dispersion of the data with many outliers beyond the 

upper whisker. Extreme outliers in the right-skewed data distribution may indicate that 

a group of patients with abnormally high blood results have a higher risk of being 

diagnosed with HCC because majority of data is in the lower (normal) range. 

Furthermore, due to the standard deviation is highly sensitive to extreme outliers, liver 

enzymes such as ALP, SGPT, SGOT with extreme outlier of over 1000 have extremely 

high standard deviation. 
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Figure 3.2 Boxplot of numeric features 
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3.3.2 Visualization of Categorical Feature 

This HCC dataset as shown in Figure 3.3 consists of gender bias with more male 

patients than female patients. 

 

Figure 3.3 Data visualization for categorical feature 

3.3.3 Visualization of Class Distribution 

The class distribution in the dataset as shown in Figures 3.4 and 3.5 are highly 

imbalanced with 71.4% (21917) of class 1: HCC and 28.6% (8774) of class 2: non-

HCC. 

 

Figure 3.4 Class distribution of HCC dataset 
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Figure 3.5 Class distribution in percentage 

3.4 DATA CLEANING 

3.4.1 Missing Values 

Figure 3.6 showed that the total missing values are relatively low, with all variables 

having a missing value less than 1000. Age_of_the_patient, SGOT, Total_Proteins, 

Albumin have missing values below 500. SGPT, Direct_Bilirubin and A/G Ratio have 

missing values within the range of 500-600. Meanwhile, Total_Bilirubin, ALP and 

Gender_of_the_patient have missing values within the range from 600-900. 

Age_of_the_patient has the lowest missing value of 2. Gender_of_the_patient has the 

highest missing value of 891.  Pus
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Figure 3.6 Summary table of missing values 

3.4.2 Handling Missing Values 

a. Row Deletion 

The Gender_of_the_patient with highest number of missing values (891) will be 

directly removed from the dataset. The incomplete medical records on gender might be 

due to privacy concerns and refusal to disclose gender information for medical records. 

Therefore, the original dataset with 30691 rows of data is reduced to 29800. 

b. Mean Imputation 

Mean imputation is used to replace the missing values of Age_of_the_patient, Albumin, 

Total_Proteins, and A/G Ratio as these features only have limited outliers with a slightly 

skewed distribution. 

c. Median Imputation 

The missing values of Total_Bilirubin, Direct_Bilirubin, ALP, SGPT and SGOT are 

imputed using median as they have positively right-skewed distribution with significant 
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and many extreme outliers. Median imputation can reduce the data variability and 

maintain the data distribution shape because it is less sensitive to outliers compared to 

mean imputation. 

d. Box Plot Comparison Before and After Imputation 

The imputation of the missing values preserves the overall characteristics and patterns 

of the original data as shown in Figure 3.7. The main reason for retaining the original 

data without removing the outliers is that in the real world, those extremely high values 

in LFT indicate a patient with acute liver failure. 

The box plot before and after imputation are quite similar. There are some 

slightly different in the median of Total_Proteins, Albumin and A/G Ratio after 

imputation. The median of Total_Proteins shifted slightly to the center of the box 

whereas the median of A/G Ratio are slightly closer to Q3 This suggests that data 

distribution of Total_Proteins become less negatively left-skewed and more symmetric 

whereas A/G ratio become more positively skewed. On the other hand, the median of 

A/G Ratio are slightly shifted closer to Q3. Furthermore, Albumin has a few outliers 

after mean imputation, but the outliers have a low impact because the median remains 

approximately the same as before. 
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Figure 3.7 Boxplot comparison before and after imputation 

e. Handling Duplicate Rows 

There are 11241 rows of duplicate data found in the dataset and were deleted. Thus, the 

total number of data points has been reduced from 29800 to 18559. 
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f. Rename the Output Column 

The column of the target output has been changed from Result to HCC for better 

understanding. 

g. Convert the Output Label 

The target class for “non-HCC” has been converted from 2 to 0. This is to ensure the 

ML algorithms can execute on the binary classification model. 

3.5 UNIVARIATE ANALYSIS 

According to the univariate analysis on Figure 3.8, most of the HCC patients are middle 

age of 30 - 59 and more prevalence in males. Patients with lower levels of 

Total_Bilirubin, Direct_Bilirubin, Albumin and A/G Ratio are at higher risk of being 

diagnosed with HCC. On the other hand, elevated liver enzymes such as ALP, SGPT, 

SGOT might indicate liver injury or damage, which can lead to liver cancer. Elevated 

bilirubin levels in an LFT can indicate potential liver problems. This is because when 

liver is damaged, it might have difficulty processing and excreting bilirubin properly, 

consequently, cause the bilirubin to accumulate in the blood. 
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3.6 DATA PREPROCESSING 

3.6.1 One Hot Encoding for Categorical Feature  

One hot encoding is a technique used to transform nominal types of categorical data 

into numerical data to use in ML algorithms. In one hot encoding, an array that has as 

many elements as the number of categories is created. In order to represent the category, 

we have an array that consists of 0 everywhere except the element that corresponds to 

that particular category with 1. This is to avoid introducing ordinal relationship between 

the numerical data and ensure that the model does not interpret numerical values as 

having a meaningful order. 

For instance, Gender_of_the_patient is converted into a numerical value 

represented by a binary (0 or 1) for each categorical variable such as Gender_Male and 

Gender_Female. Hence, when Gender_of_the_patient in the original dataset is male, it 

will become “0” in the column of Gender_Female and “1” in the column of 

Gender_Male. 

3.7 BIVARIATE ANALYSIS 

3.7.1 Pair Plot 

Based on the pair plot on Figure 3.9, the Age_of_the_patient has no linear relationship 

with other variables as the points randomly scattered. It suggests that 

Age_of_the_patient is not a strong predictor of the expected values on the blood test 

results. 

The 3 liver enzymes (SGPT, SGOT, ALP) are positively correlated with 

Total_Bilirubin and Direct_Bilirubin. This suggest that the elevated reading of 

Total_Bilirubin and Direct_Bilirubin is due to the value increase on the (SGPT, SGOT, 

ALP). Furthermore, (SGPT, SGOT, ALP) values are negatively correlated with 

Total_Proteins Albumin and A/G Ratio. The reading of Total_Proteins Albumin and 

A/G Ratio decline when the values of (SGPT, SGOT, ALP) rise. 
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Figure 3.9 Pair plot of HCC dataset 

3.7.2 Correlation Matrix Heatmap 

Based on the correlation matrix heatmap on Figure 3.10, there are strong positive 

correlation between some variables: 

1. Total_Bilirubin & Direct_Bilirubin (0.8915) 

2. SGPT & SGOT (0.7561) 

3. Total_Proteins & Albumin (0.7675) 

4. Albumin & A/G Ratio (0.6683) 
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On the other hand, Total_Bilirubin, Direct_Bilirubin, and the 3 liver enzymes 

(SGPT, SGOT, ALP) have positive correlation with the target variable. This indicates 

that when the value of these variables increase, the higher the chance it is classified as 

positive class (class 1: HCC). Whereas the lower the reading of Total_Proteins, 

Albumin and A/G Ratio, the more likely the chance diagnosed as (class 1: HCC). 

Total_Bilirubin have a negative correlation with Total_Proteins, Albumin and 

A/G Ratio which means that the higher Total_Bilirubin level might cause the decrease 

of the of Albumin and A/G Ratio. 

Most of the variables have negative correlation with the target variable (HCC) 

except Gender_Female, Total_Proteins, Albumin and A/G Ratio. Age_of_the_patient, 

Gender_Male, Gender_Female have very weak correlation (almost 0) with other 

features and the target class. 
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Figure 3.10 Correlation matrix heatmap of HCC dataset 

3.8 DATA PREPROCESSING 

3.8.1 Create New Feature 

SGOT is not a specific marker for liver damage as they will cause potential damage to 

other organs like muscles, heart, and kidney. Therefore, SGOT usually measured 

together with SGPT to check for liver problems where SGOT is divided by the SGPT 

to get the ratio. The SGOT/SGPT ratio was referred to (Hexahealth, 2024) as shown in 

Figure 3.11. 

For example: 

1. An SGOT/SGPT ratio of greater than 1 where SGOT is higher than SGPT 

suggests potentially liver damage such as cirrhosis which will lead to HCC. 
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2. An SGOT/SGPT ratio of less than 1 where SGOT is lower than SGPT suggests 

non-alcoholic fatty liver disease. 

3. An SGOT/SGPT ratio of equal to 1 where SGOT is equal to SGPT suggests 

primarily liver cell damage such as viral hepatitis, drug-induced injury such as 

liver toxicity. 

4. An SGOT/SGPT ratio of 2:1 where SGOT is double the value of SGPT suggests 

alcoholic liver disease. 

 

Figure 3.11 SGOT/SGPT ratio 

Source: Hexahealth 2024 

3.8.2 Remove Feature 

1. Direct_Bilirubin will be removed since Total_Bilirubin includes the sum of all 

forms of bilirubin in the blood which are conjugated (direct) and unconjugated 

(indirect). Besides that, most of the laboratory tests only take Total_Bilirubin as 

a measurement in the liver function test. 

2. Age_of_the_patient, Gender_Male, Gender_Female will be removed because 

they have extremely weak correlated with target class with almost 0 based on 

the correlation heatmap.  

3. SGOT will be removed as it is not a specific indicator for early prediction in 

HCC. It is an enzyme present in various tissues including liver, muscle, brain, 

and heart. A high value in SGPT does not mean that the person has a high risk 

Pus
at 

Sum
be

r 

FTSM



46 

 

of HCC, it could also mean a high risk of other diseases in the muscle, brain, 

heart, kidney, and pancreas. 

3.8.3 Robust Scaler 

Feature scaling is an important step in the data preprocessing to ensure that the features 

is transformed into a similar scale before fitting into ML models. This is to avoid biased 

model performance where the algorithms are more sensitive to the larger values of the 

features. Robust scaling is used in HCC dataset as it consists of features with extreme 

outliers such as the liver enzymes (ALP, SGPT) as shown in Figure 3.12. Robust scaler 

normalizes the scale of the features based on the median and IQR. The use of IQR is to 

reduce the effect of skewed data on the ML models as shown in Figure 3.13. 

 

Figure 3.12 HCC dataset before scaling 

 

Figure 3.13 Scaled HCC dataset 

3.8.4 Adaptive Synthetic Sampling (ADASYN) 

Imbalanced class distribution is one of the natures in most of the medical dataset that 

usually comes with one of the classes is in small minority. This issue is the major 

drawback of most ML algorithms in present a good performance of the classification 

model on the minority class. Therefore, ADASYN sampling method is applied to 

balance the class distribution before proceeding on model training and evaluation.  
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ADASYN focused on adaptively generating synthetic samples for minority 

class that are more difficult for the model to learn. ADASYN generate synthetic 

examples based on data distribution of the minority class, with more samples generated 

in areas of the feature space where the class density is low. This adaptive approach 

ensure that the synthetic instances are more representative of the minority class and less 

likely to overfit. 

ADASYN is different from Synthetic Minority Oversampling Technique 

(SMOTE) which is also a synthetic data generation. SMOTE generate synthetic instance 

by randomly selects a minority class data (a) and its k nearest minority class neighbours 

(b). Then, both points a and b will form a line segment. The synthetics data generate in 

between the line segment. This might cause overfitting problem in the dense area of the 

feature space as the synthetic samples generated evenly between the original minority 

data. 

3.9 CHAPTER SUMMARY 

This chapter has demonstrated the techniques used in data visualization, data cleaning 

and data preprocessing. The missing values of the attributes were imputed with a mean 

and median, categorical variable is encoded, data is normalized using robust scaling and 

ADASYN sampling method is applied to balance the classification output. Finally, the 

original dirty data is cleaned, preprocessed, and well prepared for ML classification 

training and modelling.  
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CHAPTER IV  

 

 

DATA MODELLING 

4.1 INTRODUCTION 

This chapter emphasizes on model development process starting from training and 

testing using the preprocessed data from the previous chapter, followed by a final 

evaluation among the models to choose the best performance model and then applying 

the FL to the best performance model with the objective to improve the interpretability 

of the classification model.  

4.2 MODEL DEVELOPMENT APPROACH 

The flow chart of model development is illustrated in Figure 4.1. The ML model 

development is an end-to-end iterative looping process that act as a guideline for 

developing a successful ML project. Data collection is done based on the understanding 

of the research objective. The second step is preparing the data for modelling. This 

includes data exploration analysis to get familiar with the data characteristics; data 

cleaning to handle inconsistent data, missing values, and outliers; data pre-processing 

such as encoding the categorical variables, feature scaling, and feature engineering. The 

details of data preprocessing can be referred in Chapter 3. 

The preprocessed data is then divided into three groups: training (80%), and 

testing (20%). The train-test split to make sure that the selected models are learning the 

underlying patterns in the training data and generalize well on the new and unseen data. 

While the validation set (20%) split from the training (80%) is used for model 

optimization with hyperparameter tuning that helps to determine the best classifier for 

testing. After data splitting, the supervised ML models are trained with cross-validation. 
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Then, model evaluation is done based on accuracy, precision, sensitivity, and F1-score. 

In the real-world situation, the model performance on the training data is not always a 

good fit to the data. Hence, hyperparameter tuning is needed to optimize the overall 

performance of the model and its generalizability to unseen data.  

Since we are focus on finding the model with interpretable results. Hence, only 

the rule-based model is chosen for optimization. The tuned rule-based model is then 

trained on validation data with cross-validation. Evaluation of tuned rule-based model 

to determine whether any improvement compared to the untuned model. The final 

evaluation of the tuned model on the test data is conducted only if the model’s 

performance improves and overfitting issues are reduced. This is to ensure the model 

prediction achieve the research objective. Training, evaluating, and tuning are iterative 

processes in order to find the optimal model. 

Lastly, we will integrate fuzzy logic into the final classification model for result 

interpretation. This section will be discussed in Chapter 5. 
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Figure 4.1 Model development process 

4.3 MODEL TRAINING 

The HCC risk prediction classifier models chosen for training are SVM, DT, RF, LR, 

GB, GNB, KNN and NN. These models have discussed earlier in section 2.3 and 2.4. 
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4.3.1 Train Test Data Split 

The dataset is split into training (80%) and testing (20%). While 80% of training data 

is further split into training (80%) and validation (20%). The purpose of further splitting 

the training data into a validation set is to further improve the model if required. This is 

crucial to evaluate the generalization of the tuned model on unseen validation data 

before deciding on the final model evaluation on testing data. 

4.3.2 Stratified K-Fold Cross-Validation 

Cross-validation is a crucial technique used to assess the performance and 

generalizability of machine learning models on the new data. Stratified K-Fold cross-

validation is useful for imbalanced classification tasks. It maintains the distribution of 

the target variable's classes in each fold as shown in Figure 4.2. In each iteration: k-1 

folds are used for training the model. The remaining 1 fold acts as the validation set for 

that iteration. This process is repeated k times while ensuring each fold is used for 

validation once. 10 fold cross validation is used in this project for models training. 

 

Figure 4.2 Stratified K-Fold validation 

Source: Müller, 2020 

4.3.3 Check for Overfitting 

a. Cross Validation Score 

Cross-validation scores function as a criterion to assess the risk of the overfitting of a 

model by estimating the prediction on unseen data based on the mean accuracy and 
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standard deviation of the model. It provides insights into the model performance in 

terms of consistency and variability. Mean accuracy shows how well the model 

performs on average across different folds of the training data, whereas standard 

deviation measures the variability or spread of the accuracy scores across the different 

folds. 

1. High mean accuracy and low standard deviation means the model is consistent 

in their performance and has a good generalizability on unseen data. 

2. Overfitting occurs when the mean accuracy and standard deviation of the model 

exhibit high values. This means that the model's performance displays high 

variability among distinct folds and have good performance in the training 

dataset, potentially showing sensitivity to specific subsets while lacking 

generalizability to unseen data.  

3. Underfitting, conversely, happens when both the mean accuracy and standard 

deviation of the model are low. This indicates that the model has a poor 

performance with inconsistent predictions. The model is not learning the 

underlying patterns in the dataset. 
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Figure 4.3 Cross validation scores of the classification models 

Table 4.1 Accuracy and standard deviation of classifiers in model training 

Classifier  Accuracy Standard Deviation 

DT 0.9880 0.0027 

RF 0.9962 0.0016 

KNN 0.9868 0.0019 

Figure 4.3 showed the cross validation scores for SVM, DT, RF, LR, GB, GNB, 

KNN and NN in each fold during the model training. Models such as DT, RF, KNN are 

among the best models. The highlighted result can be seen in Table 4.1 where the mean 
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